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University of Missouri (MU) Node: Overview and Goals

I Develop spatial and spatio-temporal (multiscale) statistical
methodology that improves the precision and interpretability
of the American Community Survey.

I Broadly develop spatio-temporal statistical methodology for
utilization in problems of official statistics (e.g., LEHD,
SAIPE, etc).

I Train undergraduate students, graduate students, and
postdoctoral researchers to become the next generation of
Federal Statisticians and/or researchers working on problems
in Federal Statistics.

I Train Federal Statisticians (and other staff) on statistical
methodologies related to spatial statistics, spatio-temporal
modeling, and hierarchical Bayesian modeling.



STSN Team
Current/Previous Researchers:

I PI: Scott H. Holan (Professor – MU)
I Co-PIs:

I Christopher K. Wikle (Professor – MU)
I Noel Cressie (Distinguished Professor – University of

Wollongong; Adjunct Professor – MU)
I Current/Former Postdocs:

I Jonathan R. Bradley
I Matthew Simpson
I Aaron Porter (Assistant Professor: Colorado School of Mines)
I Harrison Quick (CDC)

I Current/Former GRAs:
I Christopher Hassett
I Trevor Oswald
I Guohui Wu (SAS)

I URAs:
I Mary Ryan (Journalism/Statistics)
I Ellyn Atkinson (Statistics)



Spatial and Spatio-Temporal Statistics for Federal Data

I Federal data sources can be broadly classified as unit-level
(e.g., microdata) or area-level (e.g., ACS county estimates).

I Unit-level and area-level data often require different
methodology.

I Aside from Public Use Microdata Samples (PUMS), most
publicly available data is area-level (e.g., spatially referenced
over geographic regions).

I Both sources of federal data exhibit methodological challenges
due to their expansive nature:

1. Very large datasets (on the order of millions).

2. Multivariate data (large number of variables).

3. Spatially referenced.

4. Recorded over discrete time.

5. The data are often non-Gaussian.

I Data have multiple spatial-temporal scales.



Some Important Problems for Federal Statistics
Note: This list is NOT meant to be exhaustive!

1. Multiscale Spatio-Temporal Analysis:

I Change of Support: Produce estimates on user-defined
geographies, and user-defined time-periods – Jon Bradley’s talk

I Regionalization: A “best” spatial support – Jon Bradley’s talk

2. Multivariate Spatio-Temporal Prediction:

I Leveraging Information: Use dependencies between
variables, times, and regions to predict “missing” values – Jon
Bradley’s talk and some discussion here

3. Spatial Small Area Estimation: Subset of Items 1 and 2

4. Synthetic Geographies: Imputation of locations for
public-use microdata that preserves spatial attributes of
original data

Big Data: Big Data responses and/or covariates (e.g. social
media, satellite imagery, etc.) – Important in Items 1–4



Small Area Estimation (SAE) – Fay-Herriot Model

I The Fay-Herriot (FH) model model is widely used in SAE and
provides reduction in mean square error (MSE) by
incorporating auxiliary information.

I The standard FH model has the form

Yi = θi + εi ,

θi = β0 + x′iβx + ui .

I In the observation equation, i = 1, . . . , n indexes location, θi
is the underlying parameter of interest for location i (e.g., the
“superpopulation” mean), and εi is random error (often
assumed normally distributed) with variance σ2

i .

I σ2
i is the sampling-error variance at location i and is often

considered known.

I The model for θi consists of auxiliary covariates x′i and a
random spatially indexed effect ui .



Fay-Herriot Model Extensions: Functional Covariates and
Spatial Dependence (SFFH)

I FH model is a natural choice for incorporating “Big Data”
covariates, as it is a well established model for SAE that
typically provides reduction in MSE.

I “Big Data” sources can often be viewed as functional data
(curves and/or images).

I Extract information from entire curve or image, rather than
using pre-defined summary measures of the function as
covariates.

I Extend FH model to include functional covariates (e.g.,
Google Trends) and spatial dependence (Porter et al., 2014).

I We illustrate that Google Trends can be effectively utilized as
auxiliary information to reduce the MSE in ACS estimates of
relative change in percent of household Spanish-speaking
between 2008 and 2009.



Motivating Data – ACS and Google Trends

Functional covariates (temporal curves) for the Google Trends search loads of “el,”
“yo,” and “y”. To avoid clutter, we show only the first five weekly time series, in
alphabetical order (i.e., Alabama, Connecticut, District of Columbia, Florida, and
Georgia), for each search term.
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Comparing the variance of the estimates produced by the SFFH (i.e., using Google
Trends data and accounting for spatial dependence) relative to the sampling error
variances from the ACS we see a 21% reduction over the 21 states considered.



FH Model Extensions: Semiparametric Hierarchical
Empirical Likelihood (SHEL)

I In official statistics one often encounters datasets that do not
follow a common parametric form.

I May be due to a variety of issues (e.g., outliers, heavy or light
tails, abnormal skewness) mixtures of distributions may be
present, but the underlying parametric forms may be unknown.

I Transformations may be difficult to identify for such data.

I Porter et al. (2015a) develops flexible methodology for such
data in the presence of spatial and other general dependence
structures.

I Methodology is general enough to handle continuous or
discrete data on either a continuous or discrete support.

I Model illustrated using data concerning per capita income in
Missouri counties from the ACS – collected on an irregular
areal support and represents a continuous outcome.



SHEL-FH: ACS Illustration
The difference of the squared deviations (Yi − Ŷ(−i))2 for each location of estimated
per capita income for (a) the SHEL model versus the Chaudhuri and Ghosh (2011)
independence model, (b) the SHEL model versus the Chaudhuri and Ghosh (2011) DP
model, (c) the SHEL model versus the parametric model. The square represents
Kansas City, MO and the triangle represents St. Louis, MO.
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FH Model Extensions: Multivariate Spatial

I SAE can be further improved by borrowing strength across
spatial regions or by considering multiple outcomes
simultaneously.

I We propose two different FH models that include both
multivariate outcomes and latent spatial dependence (Porter
et al., 2015b):

I outcome-by-space dependence structure is separable,

I cross-dependence through the use of a generalized multivariate
conditional autoregressive (GMCAR) structure.

I State-level example: GMCAR model produces smaller MSPE,
relative to equivalent census variables, than the separable
model and the state-of-the-art multivariate model with
unstructured dependence between outcomes and no spatial
dependence.

I County-level example: GMCAR and separable models give
smaller MSPE than the state-of-the-art model.



Bayesian Marked Point Process (MPP) Modeling:
Generating Fully Synthetic Public Use Data with
Point-Referenced Geography

Goal – To publicly release data with the following information:

I Race

I Gender

I Income

I Spatial location

I Sensitive information such as
disease status

Releasing these data may present a disclosure risk. Quick et al.
(2015) solves this problem.



MPP – Illustration
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(a) True Locations
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(b) Synthetic Locations
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We generate fully synthetic, point-referenced data using a marked point process. We

use a fully Bayesian hierarchical model that directly models the exact geographic

locations and categorical and non-categorical marks.



Discussion

I Briefly described NCRN and the importance of
Academic/Government collaboration.

I Described some recent work by the Spatio-Temporal Statistics
node of the NCRN at the University of Missouri.

I Multiscale Spatio-Temporal Analysis

I Multivariate Spatio-Temporal Prediction

I Spatial Small Area Estimation

I Spatial and Spatio-Temporal Change of Support in the
Presence of Sampling Error

I Regionalization in the Presence of Sampling Error

I Synthetic Geographies

I Role of Big Data

Overall Goal: To facilitate meaningful discussion!



Thank You!

holans@missouri.edu

Spatio-Temporal Statistics NSF-Census Research Network
(STSN)

http://stsn.missouri.edu/index.shtml

http://stsn.missouri.edu/index.shtml
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